合作客户/
| 
 拜耳公司 | 
 同济大学 | 
| 
 联合大学 | 
 美国保洁 | 
| 
 美国强生 | 
 瑞士罗氏 | 
相关新闻Info
- 
                            > 乙醇胺与胜坨油田坨28区块原油5类活性组分模拟油的动态界面张力(二)> 酚胺树脂聚醚型破乳剂分子结构、浓度对油-水界面张力的影响——结果与讨论、结论> 聚氧乙烯链长度调控非离子Gemini表面活性剂的表面张力、接触角(三)> 滴体积法分析TODGA/HNO3体系萃取La3+过程中界面张力变化影响因素(一)> 表面张力测量仪的定义、分类及特点> 振荡频率、浓度、油相、界面张力对阴离子表面活性剂HABS和PS界面模量的影响(三)> 黄原胶对泡沫溶液泡沫性能、表面张力的影响(三)> 牡蛎低分子肽LOPs双重乳液制备、界面性质检测及消化吸收特性研究(三)> 抖淫app破解版最新版安卓版的身体会长歪,只是被表面张力“捏”了回来!> 辽河油田原油的石油酸、石油碱组分萃取过程、结构表征及界面张力测量——实验部分
推荐新闻Info
- 
                            > 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(三)> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(二)> 十二胺功能化石墨烯量子点的制备、表面张力及对L-薄荷醇的缓释作用(一)> 抖淫短视频比普通电子天平“好”在哪?> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(四)> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(三)> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(二)> 界面张力仪评估氨基化氧化石墨烯-脂肪酸共吸附机制、应用潜力(一)> 抖淫成年app下载证明SP-B在肺表面活性物质三维结构形成中的关键作用> 新型多功能解堵体系-单相酸体系乳化、界面张力测定及现场应用效果(二)
N-十四酰基天冬氨酸及其钠盐合成路线、制备、表面张力等性能测定(二)
来源:化工技术与开发 浏览 508 次 发布时间:2025-07-22
2.2.4反应体系pH的影响
	
缩合反应需在碱性条件下进行,碱性太弱,不利于反应进行,但碱性太强又会加速酰氯水解,使产品不纯,因此必须严格控制反应体系的pH。还有一个原因就是当氨基酸的羧基变成钠盐后,羧基的化学反应性能即被掩蔽或者说羧基被保护,而氨基的化学反应性能得到加强或说氨基活化,容易和酰基结合。因此体系的pH选取在8~12。在n(天冬氨酸)∶n(十四酰氯)=1.1∶1.0、反应时间3.5h、反应温度5℃的条件下,考察不同反应体系pH对反应的影响,其结果如表2所示。由表2可知,体系在pH为10~11时收率最高。故选择pH为10~11。
	 
表2反应体系pH对反应收率的影响
	
2.2.5原料配比的影响
	
采用天冬氨酸稍过量,一方面可以抑制酰氯的水解,另一方面又有利于提纯。选取n(天冬氨酸)∶n(十四酰氯)=1.0~1.2∶1.0。在反应体系pH=10~11、反应时间3.5h、反应温度5℃条件下,考察不同原料配比对反应的影响,结果如表3所示。
	 
表3原料配比对反应收率的影响
	
2.2.6反应时间的影响
	
反应时间过短,则反应不完全,过长也无益于反应,因此适当的反应时间对反应收率也很重要。根据同类反应的情况,将反应时间选在2.5~5h。在反应体系pH=10~11、n(天冬氨酸)∶n(十四酰氯)=1.1∶1.0、温度5℃条件下,考察不同反应时间对反应的影响,其结果如表4所示。由表4可知,反应时间3.5h反应收率达到最佳。
	 
表4反应时间对反应收率的影响
	
由以上研究得到合成N-十四酰基天冬氨酸的较佳工艺条件为:反应温度5℃,pH为10~11,n(天冬氨酸)∶n(十四酰氯)=1.1∶1.0,反应时间3.5h,收率为83.49%。
	
2.3产物的提纯处理
	
反应之后,体系为浅黄色透明均一溶液,减压蒸馏回收有机溶剂丙酮,然后用1.2mol·L-1盐酸调节体系pH值为5~6,可看到有白色物质析出,用石油醚萃取,可看到上层变浑浊,而下层为澄清浅黄色透明溶液。取出下层萃取液,继续调酸至pH值为1~2,可观察到在调酸过程中,刚开始滴加时溶液不变浑浊,说明棕榈酸已大部分在pH值为5~6之前析出,而产物在这个pH值下并不会析出,随着pH值的降低,又有白色物质析出,应为N-十四酰基天冬氨酸,过滤真空干燥可得N-十四酰基天冬氨酸。用0.5mol·L-1氢氧化钠/乙醇溶液中和至pH=7,冷却析出物烘干,即为N-十四酰基天冬氨酸钠盐产品。用高效液相色谱仪测得产品的纯度为97.06%。
图1为提纯后最终产品的HPLC图,图2为原料天冬氨酸的液相色谱图,图3为副产物棕榈酸的液相色谱图。
	 
图1 N-十四酰基天冬氨酸的HPLC图
图2天冬氨酸的HPLC图
	 
图3副产物棕榈酸的HPLC图
	
2.4表面性能的对比分析
	
对N-十四酰基天冬氨酸钠盐的几项表面性能进行了测定,并与其他表面活性剂进行了对比,结果见表5。
	 
表5几种表面活性剂的表面性能对比
	
注:OAB为油酰胺基丙基甜菜碱,cmc和γcmc均在25℃条件下测定,泡沫高度为20℃、250×10-6硬水中0min测定,渗透时间为0.1%水溶液在20℃测定,乳化时间为20℃测定0.10%水溶液对液体石蜡的乳化时间
	
由表5可知,N-十四酰基天冬氨酸钠的cmc和γcmc均低于LAS、OAB和N-十烷基天冬氨酸钠,因此其具有优异的表面活性;在硬水中的发泡性也优于其他3种表面活性剂,渗透性在4种表面活性剂中也最佳,对液体石蜡的乳化性不如其它3种表面活性剂,可能是由于其HLB值与油相不匹配。
	 
表6 40℃不同硬水中不同表面活性剂溶液的钙皂分散指数
	
钙皂分散的混合胶束机理认为,一个有效的钙皂分散剂分子结构中必须包含一个大的极性亲水头基,这种“大”除了强度大外,也指体积庞大,这样才能将肥皂分子有效隔开,使之不易形成钙皂。N-十酰基天冬氨酸钠和N-十四酰基天冬氨酸钠都具有类似结构,而LAS及OAB并不具有类似结构。由表6可知,N-脂肪酰基天冬氨钠具有优良的钙皂分散性,N-十四酰基天冬氨酸钠更为突出,尤其是在高硬度水中,其钙皂分散性能更为突出,说明其在硬水中具有良好的应用前景。
	
3结论
	
1)通过对N-十四酰基天冬氨酸钠合成工艺的研究,得到了以十四酰氯和天冬氨酸为原料的优化的合成工艺路线。
	
2)通过单因素考察法,得到了合成N-十四酰基天冬氨酸钠的较佳工艺条件为:以水-丙酮[V(水)∶V(丙酮)=1∶1]混合溶剂为反应介质,采用十四酰氯与氢氧化钠溶液同时滴加的方式,反应温度5℃,pH为10~11,n(天冬氨酸)∶n(十四酰氯)=1.1∶1.0,反应时间3.5h,收率为83.49%。
	
3)表面性能测试表明,产品具有优异的表面活性和渗透性,尤其以在硬水中的钙皂分散性为最佳,因此在高硬度水质中有着广阔的开发应用价值。
	






 
  
  
  
 